Accueil / flux-publications / OCR Error Correction Using Character Correction and Feature-Based Word Classification

OCR Error Correction Using Character Correction and Feature-Based Word Classification

FacebookTwitter

Nachum Dershowitz et Ido Kissos, "OCR Error Correction Using Character Correction and Feature-Based Word Classification", Actes de l'IAPR International Workshop on Document Analysis Systems (DAS 2016), Santorin, 2016, 198-203 pp.

Abstract

This paper explores the use of a learned classifier for post-OCR text correction. Experiments with the Arabic language show that this approach, which integrates a weighted confusion matrix and a shallow language model, improves the vast majority of segmentation and recognition errors, the most frequent types of error on our dataset.

Plus d'informations (site IEEE Xplore Digital Library)

Machine Learning Tools for Historical Documents
01 octobre 2015 - 30 juin 2016
30 juin 2016
485
Nachum Dershowitz
6027
2016
Humanités numériques
Époque contemporaine (1789-...)
Monde ou sans région
Nachum Dershowitz (et al.)